A DIFFRACTOMETER FOR X-RAY DIFFRACTION STUDIES OF BOND COATS BENEATH THERMAL BARRIER COATINGS

K. Vaidyanathan¹, D. Pease², E. Jordan³, H. Canistraro⁴, M. Gell¹ and T. Watkins⁵

¹Department of Materials and Metallurgical Engineering, University of Connecticut
²Department of Physics, University of Connecticut
³Dept. of Mechanical Engineering, University of Connecticut
⁴School of Engineering, University of Hartford
⁵High Temperature Materials Laboratory, Oak Ridge National Laboratory

Commercially important thermal barrier coating (TBCs) assemblies contain a protective vapor deposited yttria stabilized zirconia ceramic layer, over a nickel-aluminum bond coat and a nickel-based superalloy. The thinner high performance coatings typically fail due to mismatch strain at the ceramic/metal interface. We have constructed a laboratory diffractometer with which we have measured diffraction lines of bond coats lying underneath a 125-µm thick thermal barrier coating, without using a rotating anode x-ray source. The diffractometer utilizes a niobium target x-ray tube in Seeman-Bohlin geometry with fixed sample position, where a very large Johansson bent crystal is used for gathering and focusing x-rays to the sample.