SOLID STATE PHASE TRANSITIONS OF NH$_4$NO$_3$-KNO$_3$
BINARY SYSTEM

Wen-Ming Chien, Dhanesh Chandra, and Jennifer Smith
Metallurgical and Materials Engineering, Mail Stop 388
University of Nevada, Reno
Reno, Nevada 89557

Claudia J. Rawn
Oak Ridge National Laboratory
Metals and Ceramics Division
Oak Ridge TN 37831-6064

Abdel K. Helmy
TRW Incorporated
Lockwood NV 89434

Solid-state phase transitions in ammonium nitrate (NH$_4$NO$_3$) - potassium nitrate (KNO$_3$) solid solutions have been determined by using high temperature X-ray diffractometry and differential scanning calorimetry. Ammonium nitrate (AN) is of great interest for use in gas generators for automobile air bag systems. In the important temperature range of the gas generators for automobile air bag, -40°C to +110°C, three phase transitions cause abrupt changes in specific volume for NH$_4$NO$_3$, leading to irreversible growth of cast charges. Solid solutions of NH$_4$NO$_3$-KNO$_3$ have been used such that there are no solid-state transitions between -100°C to +120°C. For compositions between 5 - 25 wt% KNO$_3$ in NH$_4$NO$_3$, there are no solid-state phase transitions between 22 to 80°C in the single (AN) phase III region. There are the new solid-state phases in the mid-composition range of NH$_4$NO$_3$-KNO$_3$ solid solutions. Above ambient temperature X-ray diffractometry and differential scanning calorimetric data the allowed construction of NH$_4$NO$_3$-KNO$_3$ temperature-composition phase diagram. Details of phase equilibria, and lattice expansions during heating will be presented.

Acknowledgments: The authors thank TRW Incorporated, Lockwood, Arizona for support. Research sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT - Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05- OOOR22725.