CHARACTERIZATION OF ULTRAFINE NANOSTRUCTURES BY X-RAY DIFFRACTION

N. Mattern

Institut für Festkörper- und Werkstofforschung Dresden

Nanocrystalline materials can be obtained upon annealing of an amorphous precursor if a high nucleation rate is combined with a low growth rate. Recently, ultra fine nanostructures were found as the first step of crystallization of Zr-based bulk glasses containing different additions such as Ti, Fe, or Pd. Figure 1 shows X-ray diffraction patterns of amorphous (Zr$_{65}$Al$_{7.5}$Cu$_{17.5}$Ni$_{10}$)$_{100-x}$Fe$_x$ alloys annealed at 723 K for 30 min. The reflections of the NiTi$_{12}$-type phase formed are strongly broadened due to size effect. An average crystallite size of 2-5 nm is estimated for the alloy with 20 at% Fe. Results of Rietveld refinement and atomic pair correlation functions are presented in comparison with transmission electron microscopy investigations.

Fig. 1: XRD of (Zr$_{65}$Al$_{7.5}$Cu$_{17.5}$Ni$_{10}$)$_{100-x}$Fe$_x$ at annealed $T_A=723$ K for 30 min (measured (o) and calculated (-) data)