Critical issues for Mo$_5$Si$_3$ as an ultra-high-temperature material include the understanding of the structure and the reduction of high anisotropy in the coefficient of thermal expansion (CTE). In Mo$_5$Si$_3$, the CTE along the c-direction is more than twice that in the a-direction. We address these issues by x-ray powder diffraction and by first-principles calculations where we examine the physical origin for the high CTE anisotropy. The x-ray powder diffraction data was collected on (Mo,Nb)$_5$Si$_3$ samples using two different diffractometers with different high temperature furnace designs. Parallel beam optics and a low temperature gradient in the furnace improved the experimental precision dramatically. The anisotropy is due to an elastically more rigid basal plane and a higher anharmonicity along the c-axis. This higher anharmonicity along the c-axis is attributed to the existence of [001] Mo chains in the D$_{8m}$ structure of Mo$_5$Si$_3$. As these chain structures are modified (by alloying additions) or eliminated (by structural modification from D$_{8m}$ to D$_8$), we found significant changes in the CTE anisotropy. Additions of Nb up to approximately 40 at. % reduced the anisotropy. At higher Nb concentrations the CTE increased until the structure changed to that of Nb$_5$Si$_3$ and the CTE anisotropy decreased.

Work sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences; and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory. ORNL is operated by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.