SR-XRF INVESTIGATION OF HUMAN BONE

P. Wobrauschek, G. Peponi, C. Streli, C. Jokubonis, G. Falkenberg\(^1\) and W. Osterode\(^2\)

Atominstitut der Österreichischen Universitäten, Stadionallee 2, A-1020 Vienna, Austria

\(^{1}\)HASYLAB, DESY, Notkestrasse 85, D-22607 Hamburg, Germany

\(^{2}\)Universitätsklinik für Innere Medizin IV, Währinger Gürtel 18-20, A-1090 Vienna, Austria

Mineral and trace elements are not homogeneously distributed in human bone. Differences in concentrations have been documented between the outer (Substantia Compacta: SC) and inner bone region (Substantia Spongiosa: SS). However, little information is available about the distribution and the concentration ratio of mineral and trace elements within this transition area (SC/SS). The microfluorescence facility installed at the bending magnet Beamline L at HASYLAB, Hamburg, was used for the investigation focussing on the concentration of Pb; among the heavy metals, Pb – acquired through food and pollution – has been proven to exert the strongest interaction with Ca, the essential bone mineral. Moreover with increased bone metabolism lead is excreted equimolar with Calcium [1]. In this preliminary study bone of a hip-operated adult patient was cut to show a plane perpendicular to the SC/SS transition surface. For the Pb detection, the excitation with the synchrotron white spectrum to excite the K-shell and a monochromatic beam obtained with the Si(111) channel cut to measure the L-shell fluorescence were compared; the monochromatic excitation delivered the best peak to background ratio and was chosen.