An In-situ USAXS Study of Microstructural Evolution in a Ni-Based Alloy

Matthew G. Frith,* Jan Ilavsky, X-ray Science Division, APS, ANL, Argonne, IL 60439 USA; Govindarajan Muralidharan, Materials Science and Technology Division, ORNL, Oak Ridge, TN 37831 USA, mfrith@anl.gov

High performance Ni-based alloys are required for use in exhaust valve applications in the next generation, high efficiency automotive engines. These alloys are strengthened through the precipitation of coherent, Ni₃(Al,X) type γ ' precipitates. Since these alloys are expected to operate at 870°C and above, microstructural stability of the γ ' strengthening precipitates is critical to achieving the desirable performance characteristics of these alloys in this application. *In-situ* USAXS/SAXS offers the ability to characterize particle size and particle size distributions in the aged condition and to monitor their evolution as a function of time at the typical exposure temperatures. We will present the results from an Ultra-small-angle (USAXS)/SAXS/WAXS study of γ ' evolution in a model Ni-based alloy. Data obtained from room temperature measurements will be used to characterize the microstructure in the as-aged condition. Results from *in-situ* high temperature ultra-small-angle (USAXS)/SAXS/WAXS measurements will be used to characterize precipitate coarsening behavior in the alloy.

Acknowledgements

Research sponsored by the U.S.DOE, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under contract DE-AC05-00OR22725 with UT-Battelle, LLC and used resources of the Advanced Photon Source, a U. S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.